
Trends
Understanding the genetic basis of
organismal form and function is funda-
mental in evolutionary biology.

Theoretical work supports models of
polygenic evolution, but years of under-
powered mapping analyses have
biased the literature in favor of large-
effect QTLs.

The disconnect between theoretical
models and empirical data is trouble-
some because it distorts our under-
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Unraveling the genetic basis of organismal form and function remains one of the
major goals of evolutionary biology. Theory has long supported a model of
polygenic evolution in which quantitative traits are underpinned by many genes
of small effect, but empirical methods have lacked the power to detect causa-
tive loci when effect sizes are small or moderate. We (i) review traditional
approaches used for identifying the molecular basis of phenotypic traits, to
highlight the inherent problems and pitfalls that bias them towards the detec-
tion of large-effect loci. We then (ii) outline the promises of recent statistical
frameworks to detect polygenic signatures of trait evolution, and discuss some
of the first studies in evolutionary biology employing these approaches. Lastly,
we (iii) outline future directions and point to areas that still need development.
standing of the molecular targets of
selection.

Recent methodological advance-
ments, and improvements in statistics
and experimental designs, promise a
less-biased empirical evaluation of the
causal variants of phenotypic evolution.

Despite these advancements, the
application of new methods has been
slow, and empirical data powerful
enough to genetically dissect polygenic
traits are only starting to emerge.
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The Search for the Loci that Matter in Evolution
A fundamental goal in evolutionary biology is to identify the genes shaping phenotypes [1].
Achieving this goal has been anything from straightforward, however. Theoreticians have long
described phenotypic evolution as a slow process that is driven by weak selection that typically
extends long time-periods. The mathematical interpretation of this process is the infinitesimal
model, which was introduced in 1918 by Fisher when he demonstrated that the inheritance and
evolution of quantitative traits (see Glossary) proceeds via selection on an infinite number of
unlinked and non-epistatic polygenes of small effect [2,3]. An abundance of theoretical treat-
ments have since emerged corroborating that the majority of quantitative traits are caused by
many genes of small and equal effect, suggesting that evolutionary change can be represented
as a flux in allele frequency changes of these polygenes (e.g., [4–6]).

While theoretical models overwhelmingly support a model of polygenic evolution, the empirical
demonstration of polygenes has proven difficult [7]. In the early days, the demonstration of
polygenes was hampered by a lack of molecular knowledge and technologies, and it was only
after 1980 that it was possible to use polymorphic marker systems [e.g., allozymes, amplified
fragment length polymorphisms (AFLPs), microsatellites] to initiate the search for the genes
responsible for quantitative phenotypic variation within a formalized framework [8]. Mapped loci
via this framework were redubbed quantitative trait loci (QTLs), and thereupon became a
popular research pursuit. The identification of QTLs can in principle estimate the number of
genes responsible for quantitative variation and the size of their effects, but in practice the
majority of current approaches carry significant problems. First, the vast majority of study
designs are underpowered for detecting polygenes, and thus show an ascertainment bias
towards large-effect loci [9–12]. Second, spurious QTLs and skewed effect sizes occur due to
non-representative allele frequencies in the mapping population (e.g., few founders), population
stratification (e.g., caused by population structure or family structure), or to low environmental
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Glossary
Background selection: a process in
which weakly deleterious mutations
drift to low frequencies and are then
purged from the population by
negative selection, which causes
decreased genetic diversity at linked
loci in general and around conserved
genes in particular.
Candidate gene: a gene of
hypothesized relevance to the
studied phenotype. This could be a
gene involved in a pathway affecting
a phenotype or a gene that has been
implicated with the trait in previous
studies. Sequencing the gene in
individuals with divergent phenotypes
can identify mutations which are
associated with adaptive variation.
Genome-wide association study
(GWAS): also known as association
mapping, a trait-mapping approach
where polymorphisms across the
whole genome are screened for an
association with a trait in multiple
individuals. Statistical associations
between genotype and phenotype
only arise when the marker and the
causative locus are in strong LD. It
relies on historical recombination in
the mapping population and has
therefore relatively high precision.
Genomics: study of the function and
structure of genomes.
Linkage disequilibrium (LD): non-
random association of alleles at
different loci (often, but not
necessarily, in close genomic
proximity).
Mendelian trait: a trait controlled by
a single locus that is inherited
according to Mendel's laws.
Next-generation sequencing
(NGS): several different types of high-
throughput DNA sequencing
methods where hundreds of
thousands or millions of reads
(sequences) are produced
simultaneously.
Omics: a study that targets
everything of something. For
example, genomics targets all genes
in the genome, and transcriptomics
targets all expressed gene in the
genome.
Polygenic evolution: a process in
which adaptation occurs by
simultaneous selection operating on
variants at many loci (perhaps tens or
hundreds or more). A common
scenario of polygenic evolution would
be that there is a shift in the optimal
phenotype for a quantitative trait that
is affected by hundreds of alleles of
variance in laboratory experiments (e.g., leading to an overestimation of the genetic compo-
nents) [13]. Third, many of the commonly employed experimental designs use candidate gene
approaches that effectively target large-effect variants a priori [14].

In the past years, more powerful methods have been developed that can potentially overcome
many pitfalls inherent in the traditional approaches. These approaches, coupled with advances
in next-generation sequencing (NGS), allows the generation of thousands of markers in any
organism, in more detail, and at lower cost than ever before [15], and hold immense promise to
obtain a less-biased empirical evaluation of the causal molecular variants of phenotypic evo-
lution. Despite this appealing promise, applications of the new polygenic frameworks are still in
their infancy in evolutionary biology, but are already being increasingly applied in the fields of
human medicine and agriculture [16–18]. We review here the methods available to generate
genotype–phenotype maps by (i) briefly outlining the traditional approaches and discussing their
underlying problems and bias towards the detection of the types of genes underlying phenotypic
evolution. Then, we (ii) turn to the very recent methodological developments and statistical
models that now allow a more-powerful dissection of polygenic evolution. Finally, we outline (iii)
how these new developments can be applied to detect polygenic evolution in evolutionary
biology, and highlight areas where conceptual uncertainties remain that require further
development.

Traditional Approaches and their Problems and Pitfalls
In the pre- and early-genomics era, the mapping of genes underlying phenotypic traits
employed different approaches that can be coarsely classified as either forward genetics
(‘top-down’) or reverse genetics (‘bottom-up’). We do not intend to provide a comprehensive
review of the statistical frameworks and assumptions of the methods here, which can be found
elsewhere [19–23], but instead we aim to briefly discuss their inherent biases and how these may
impact on their suitability to detect genomic regions that correspond to phenotypic traits.

Forward-Genetics Approaches
Forward-genetics approaches start with the measurement of a phenotype followed by associ-
ating markers and phenotypic variation to detect causative genes or chromosome regions. The
two main procedures for phenotype-driven mapping approaches are (i) QTL mapping analysis
and (ii) genome-wide association study (GWAS) [13,24]. These approaches depend on the
existence of a positioned genome-wide marker map, but differ in how the association to the
phenotype variation is modeled. QTL mapping measures, loosely speaking, the correlation
between marker and phenotype variation in experimental crosses or pedigrees with related, but
phenotypically variable, individuals [23]. GWAS aims at obtaining statistical genotype–pheno-
type associations with physically positioned markers in a set of phenotypically variable but
typically unrelated individuals (e.g., in humans [25]). Thus, the main distinction between QTL
mapping and GWAS is that the former examines genotype–phenotype associations within
controlled crosses or wild pedigrees, and therefore exploits recent recombination events,
whereas the latter detects such associations in populations with an old history of recombination
and thus with low levels of linkage disequilibrium (LD). As a consequence, QTL mapping has
low precision but requires fewer markers (one marker every �1–10 cM), whereas GWAS has
higher precision but requires much denser marker maps.

In addition to this main distinction, the two approaches also differ in their power to detect QTLs
and in their experimental design flexibility. For example, the power of QTL mapping studies
ultimately relies on large families, and these can be difficult to obtain (i.e., mammals often take
several years to reach sexual maturity, and then only produce a small number of recombinant
offspring [26]). With small family sizes, the power of detecting small- to medium-effect QTLs is
limited, which is corroborated by empirical data showing that QTL mapping studies generally
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small effect. Polygenic adaptation
might also occur from new mutations
at many loci, followed by a shift in
the optimal phenotype.
Quantitative trait: typically a
phenotypic trait that is influenced by
polygenic effects (two or more loci)
and the environment, and can be
measured quantitatively.
Quantitative trait locus (QTL): a
chromosomal region containing one
or more genes that underlie a
quantitative trait.
Quantitative trait locus mapping:
a trait-mapping approach that
analyses co-variation between
markers of the trait in a set of related
individuals, e.g., an experimental
cross or a pedigree.
Single-nucleotide polymorphism
(SNP): nucleotide variation at a single
sequence position in the genome.
show a skewed distribution of effect sizes (where few large-effect loci account for most of the
variation). Part of this large skew is related to the ‘Beavis effect’, which describes the upward
bias in the estimated proportion of the genetic variance explained by mapped QTLs owing to
small sample sizes [27]. Indeed, simulations suggest that the Beavis effect may even occur when
sample size is as large as 1000 individuals [28]. This bias is related to the effect known as the
‘Winner's Curse’ in GWAS studies, which also leads to an overestimation of the effect size for
significantly associated loci [29]. An additional problem with QTL detection in mapping studies is
that, if a sufficiently high number of effective recombination events are lacking in the pedigree
population, then linked QTLs are commonly grouped into single large QTLs [7]. The relative
flexibility of the two approaches also differ because GWAS-based methods require no experi-
mental crosses, meaning that the size of the sampling population, and thus the power of the
sample relative to the genome size and number of groups, can be more easily controlled. The
enhanced experimental flexibility of GWAS studies is somewhat counterbalanced by the need to
apply a high number of single-nucleotide polymorphisms (SNPs; i.e., via the application of
high-density genotyping platforms) such that genomic background levels of LD can be covered
[30,31]. Some of these aforementioned problems can be minimized by combining these different
approaches, as outlined in Box 1.

Reverse-Genetics Approaches
Reverse-genetics approaches, such as genome scans, analyze the genomic pattern at the
sequence level to infer evolutionary scenarios or genomic architectures of traits or phenotypes
[11,32]. At the heart of this method lies the detection of outlier loci to uncover signatures of
selection by identifying large allele-frequency changes along geographic clines or environmental
gradients [33,34], or by identifying the diversity-reducing signatures of selective sweeps [35]. By
screening the genome for markers that have extreme levels of differentiation (outlier loci) between
species, populations, or phenotype classes, this method typically tests one locus at a time, or
the average signal along a chromosomal interval [36], and can uncover loci that have evolved
under relatively strong selection that have either swept to high frequency in the population or are
under strong divergent selection among populations [37]. In the context of genotype–phenotype
mapping, these methods thus differ from the forward genetics approaches by explicitly inferring
the genomic architecture of traits from genome scans rather than directly associating genotypes
and traits in statistical models.
Box 1. Combining Approaches To Minimize Problems

Both QTL mapping studies and GWAS procedures are well suited to detect and map mono- or oligogenic trait
architectures that show a moderate to large effect (e.g., many diseases [76]). However, the moderate power of both
approaches makes them much less suited to detect complex traits shaped by many minimal effects. One can combine
different forward genetic approaches in a sequential fashion to harvest the advantages of each method, as illustrated in
studies investigating the genomics of horn morphology in long-lived Soay sheep (Ovis aries, see Figure 1A,B in main text).
First, QTLs were mapped through QTL analyses using a detailed, but wild, pedigree [77], and then the same region was
confirmed with a GWAS [78]. The association study allowed the fine mapping of the trait and it was possible to identify the
relaxin-like receptor 2 gene (RXFP2) as the QTL for horn morphology [78]. The RXFP2 gene has two alleles, of which one
is dominant and co-segregates with normal, large horns, whereas the other is a recessive allele and co-segregates with
small and sometimes deformed horns. Interestingly, heterozygotes are favored by selection because one of the
homozygous genotypes (the double recessive) has low mating success, whereas the other homozygote experiences
low survival. Thus, in this system the combined action of sexual (mating) and natural (survival) selection causes a
heterozygote advantage, thereby maintaining alternative alleles in the population.

It is also possible to overcome some of the aforementioned problems by combining forward and reverse-genetics
approaches, such as in studies on parallel evolutionary divergence in limnetic–benthic whitefish ecotype pairs (Cor-
egonus clupeaformis). First, eight growth-associated QTLs were mapped in families using AFLP markers, and sub-
sequent genome scans in four sympatric pairs of whitefish then showed that two of the strongest QTLs were under the
influence of directional selection and showed parallel reductions of gene flow over multiple populations [79]. More recent
analyses developing and utilizing a large panel of SNPs in the same whitefish study system managed to provide evidence
for both genetic parallelism and independent genetic routes underlying phenotype evolution among populations [80].
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With the rise of high-throughput technologies, the use of genome scans has become a popular
pursuit in the past 10 years; however, these outlier tests are not without drawbacks. All genome
scan methods rely on the premise that it is possible to clearly distinguish between the genetic
signals caused by non-neutral, selective processes and those signals caused by other processes
such as drift. Non-neutral processes can be detected when an allele is advantageous and
increases in frequency in the population. The rapid change in allele frequency reduces the
opportunities for recombination in the genomic region where the allele resides, and leads to a
similar reduction in mutations (since the most recent common ancestor), which in turn typically
results in high levels of LD, long high-frequency haplotypes, a large proportion of commonly derived
alleles, and a loss of genetic variation around the selected site(s). The interpretation of such patterns
in genome scans is made complicated by the fact that several processes can produce similar
patterns. Specifically, a similar genomic pattern can be produced by differences in recombination
rates across the genome, where genetic drift and/or background selection create high differ-
entiation in regions with low recombination rate [38]. Likewise, population stratification, family
structure, or cryptic relatedness lead to the correlation of allele frequencies among demes, which
affects outlier detection [39,40]. Furthermore, if selection is recent, then the time may not have been
sufficient to result in the differentiation of alleles to be detectable with the (often modest) sample
sizes [41]. Compared to the forward genetics approaches, genome scans involve, in principle, less
bias towards large-effect loci because they do not target large phenotypic differences a priori but
instead seek to identify any signatures of selection [42]. However, these differences between
methods erode when GWAS compare more-or-less discrete phenotypic traits that segregate into,
for example, two distinct classes, in which case GWAS and genome scans behave similarly.

Finally, candidate gene approaches are also grouped in the ‘bottom-up’ methods. Given that
they typically target monogenes a priori, and as such induce a strong ascertainment bias
towards large-effect loci. This is because the literature becomes biased towards a few well-
known candidate genes, which may not be representative of their actual importance in evolu-
tionary change. In a recent review cataloging the genetic hotspots of phenotypic variation [43], it
was found that the majority of studies target well-known regions, for example, a sixth of all entries
belonged to the MC1R candidate gene category.

Recent Promises Towards the Detection of Polygenic Evolution
It stands clear that the traditional forward- and reverse-genetics methods are struggling with
several inherent shortcomings. The main problem lies in the lack of power and precision to
detect polygenic selection [29,44]. This has led to a skewed literature that predominantly
describes monogenic selection, which in turn has biased our general understanding of the
genetic architecture of quantitative traits. The genetic mapping field is, however, increasingly
aware of these shortcomings, and during the past few years concerted advances have been
made at many levels. These advances include improved experimental design as well as
improvements to phenotyping and genotyping methods and their associated statistical anal-
yses. In this section we review these new advances and their potential benefits.

Improved Resolution and Experimental Design
Genetic maps are continuously being improved. Only a few years ago, most genetic maps were
based on less than a hundred markers, but have since been replaced by dense maps with markers
selected from millions of detected polymorphisms [45]. For example, whereas the three-spined
stickleback Gasterosteus aculeatus linkage map in 2001 included a mere 227 informative markers,
the improved genomic facilities of the species nowadays make it possible to screen several
thousand SNPs [46]. Likewise, the list of genomically enabled species is rapidly and continuously
growing, thereby new traits, genetic backgrounds, and evolutionary histories can be investigated
[15,47]. The increased marker density and the more-elaborate maps, such as seen in the collared
flycatcher Ficedula albicollis [48], make it also possible to scan highly-recombining regions of the
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genome in species with very low levels of LD, thereby increasing the proportion of the genome that
is actually screened and reducing the risk of missing causative loci [49].

Increased awareness of the Beavis effect [28] and the Winner's course [29] has made research-
ers aware of the importance of sufficiently large mapping panels, and the majority of designs
nowadays use a sufficiently large sample size to minimize false positives (i.e., several hundred
individuals). Indeed, the most data-rich association studies in medicine and animal and plant
breeding are screening thousands of individuals for numerous polymorphisms. For example, a
recent study investigating the highly polygenic human height trait used data from no less than
253 288 genotyped individuals [25].

It is well known that population stratification and hidden family structure in the mapping panel
can cause false positives, and that this can only be overcome with a careful and controlled
sampling design. However, despite increased awareness, population stratification is difficult to
fully account for a priori and it continues to be a risk that is hard to address [25]. For example, in
longitudinal studies environmental variation may change over time, thereby introducing pheno-
typic variance in the sample and affecting the estimate of effect sizes. Similarly, migration, drift,
and family structures can be difficult to account for, particularly in species which are only little
understood ecologically. Some recent genome-scan approaches have employed refined exper-
imental designs that minimize, if not circumvent, problems associated with relatedness among
individuals. In a recent study on host ecotypes of Timema cristinae stick insects (Figure 1C,D),
where host plant-dependent natural selection causes differential mortality of phenotypes,
selection was studied by quantifying allele frequencies before and after an episode of natural
selection [50]. By sampling the same pool of individuals before and after a selective event, one
can account for the issues associated with population stratification, relatedness, and so on.
Gompert and colleagues [50] found large genome-wide allele-frequency changes that could
mostly be attributed to random mortality. A similar approach was also utilized when assessing
the extent of parallelism in the Timema ecotype system. To gain insights into the processes that
may have led to this parallel genomic and phenotypic divergence, the two ecotypes were
transplanted to different hosts in nature in a paired-blocks design, and the genotypic signatures
before and after the experiment were measured. The experiment showed that several highly-
divergent SNPs exhibited parallel divergence between hosts, consistent with the idea that
natural selection is the driving force in creating islands of repeatable genomic divergence [51].

Improved Phenotyping
While genotypes are inherited in a discrete space, which makes them amenable to mapping
studies, phenotypes span a more continuous and multidimensional space. Understanding the
genotype–phenotype map therefore demands careful evaluation of the phenotypic space [52],
which ultimately requires the parallel development of high-throughput and accurate methods for
fast phenotyping. Advances in technology and manufacturing of digitizing equipment and video
cameras have greatly increased the ease with which body landmarks and outlines can be
recorded, especially in organisms where the specimen is readily projected in 2D. A prominent
case where this has been successfully applied are dipteran wings. For instance, an automated
wing-measuring machine has been developed for Drosophila that can record 100 wing param-
eters (that together sum up the positions of the major wing veins), allowing wings of live flies to be
measured at a rate of >1 per minute [53]. Likewise, in recent years many studies have been
moving on from univariate measures of phenotypic divergence to multivariate traits, for example,
using geometric morphometrics [54].

Improved Relatedness Estimation
Traditionally, QTL analyses apply a relatedness matrix which is estimated with the identity-by-
decent (IBD) matrix derived from pedigrees. When dense genotype maps are available, the IBD
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(A) (B)

(C) (D)
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Figure 1. Examples of Studies where
Different Approaches Were Com-
bined To Improve the Mapping
Resolution (A,B) or where Improved
Experimental Designs Yielded a
More-Powerful Way To Describe
the Genomic Footprint of Natural
Selection in Nature (C–E). Panel (A)
shows a small horned and (B) a large-
horned Soay sheep (Ovis aries) (photo
courtesy Arpat Ozgul), where horn mor-
phology could be successfully mapped to
a local genomic region using a combina-
tion of QTL mapping and subsequent
GWAS analyses [77,78]. Panel (C) shows
a green and (D) a striped ecotype of the
walking stick insect Timema cristinae
(photo courtesy Aaron Comeault), a study
system where genomic effects of natural
selection on different phenotypes could be
detected using an experimental design that
quantifies allele frequencies before and
after an episode of phenotypic selection
[50,51]. Lastly, panel (E) shows two eel
(Anguilla rostrata) ecotypes: on top is the
large ecotype, representative of the rare,
slow-growing, and late-maturing form that
characterizes Lake Ontario/upper St.
Lawrence River. Below is the small eco-
type, which is found in the brackish/salt-
water habitat, and is fast-growing and
early-maturing (photo courtesy Guy Ver-
reault). Using both a monogenic and a
polygenic framework, Pavey et al. [81] were
able to show that habitat-specific ecotypes
from the same panmictic eel population
could be best reclassified into the ecotype
classes with a polygenic model, as
opposed to a monogenic model.
matrix can be replaced by a genomic relationship matrix, in other words an identical-by-state
(IBS) matrix estimated from genome-wide SNPs [55]. This has at least two benefits. First, an IBS
matrix might better describe relatedness than an IBD matrix because the latter is compromised
by the fact that the genome segregates in a finite number of chromosome chunks (linkage
blocks), causing variation in genomic similarity between individuals [56]. Second, by avoiding
pedigree-based methods one can more freely sample individuals, and thereby increase the
sample size to avoid problems such as the Beavis effect. The power of this method remains to be
determined, but recent studies show that genome wide markers often result in superior
estimates of relatedness, whereas quantitative genetics estimations are only marginally
improved [57,58]. Nevertheless, a clear benefit with marker- and IBS-based QTL analyses is
the possibility to explore the genotype–phenotype space also in systems where reconstructing
pedigrees is not practical or feasible.

Improved Analytical Frameworks To Detect and Evaluate Polygenic Signals
In addition to improved genotyping, phenotyping, and experimental designs, new statistical
frameworks are continuously being developed. This has led to important recent advances in
the accuracy and precision of single- and polygenetic modeling, and some of these methods are
now capable of incorporating several confounding factors (e.g., environmental noise). These
methods include improved mixed models, and phylogenetic and polygenic modeling, as outlined
in Box 2.
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Box 2. Recent Modeling Advances To Increase the Accuracy and Precision of Single- and Polygenetic
Detection

Improved Mixed Models

Mixed models that incorporate confounding factors (e.g., environmental noise) increase the accuracy and precision of
both single- and polygenetic models. The GEMMA software (www.xzlab.org/software.html) [82], for example, imple-
ments the Genome-Wide Efficient Mixed Model Association algorithm for a standard linear mixed model and some of its
close relatives for GWAS. The program works by fitting a univariate linear mixed model (LMM) for marker association tests
with a single phenotype to account for population stratification and sample structure, and for estimating the proportion of
variance in phenotypes explained (PVE) by typed genotypes [83,84]. It also applies a multivariate linear mixed model
(mvLMM) for testing marker associations with multiple phenotypes while simultaneously controlling for population
stratification, and for estimating genetic correlations among quantitative traits [85]. Finally, Bayesian sparse linear mixed
model (BSLMM) is implemented which allows estimating PVE by typed genotypes, predicting phenotypes, and
identifying associated markers by jointly modeling all markers while controlling for population structure [86]. GEMMA
has been widely applied recently (e.g., [87]), but some caution is warranted [88].

Phylogenetic Modeling
Another approach to separate processes shaping local versus genome-wide patterns is implemented in Saguaro (http://
saguarogw.sourceforge.net) [89]. This program uses algorithms that combine hidden Markov models (HMM) with self-
organizing maps (SOM) to create statistical local phylogenies for genomic regions in sequence alignments of species,
subspecies, and/or populations. Then, the overall genome-wide phylogeny of the ancestral pattern is recognizable, as
are deviating genomic phylogenies reflecting evolutionary forces that act locally. Depending on the study question and
experimental design, the local genomic phylogenies may reveal genomic architectures and adaptations to particular
environments. Saguaro does not rely on a priori hypotheses through implementing HMM and neural network models.
Saguaro was applied recently in a study of speciation genomics in carrion and hooded crows Corvus corone [90].

Polygenetic Modeling
Several pathway analyses to model multiple SNPs have been developed. The Random Forest algorithm, for example,
uses a tree-based ensemble machine learning tool and explicitly takes the correlation and interaction among multiple loci
into account [91]. Because random forest approaches explicitly take the correlation and interaction among multiple loci
into account, this method is well suited to detect polygenic signatures of selection in the genome [91]. The R package
Random Forest and its associated function randomForest can be used to identify correlations as well as interactions
among tens or hundreds of loci [92]. A few studies have applied this approach to study selection in natural populations,
including the genomic basis of run time in Chinook salmon [93], habitat discrimination of ecotypes in the panmictic
American eel ([81], see also Figure 1E in main text), anthropogenic selection in polluted environments of the European and
American eel [94], and genetic architecture underlying the evolution of body shape in whitefish ecotypes [80].
Important progress is also being made to further understand whether the studied traits have a
poly- or monogenic basis. One such method is to partition the cumulative additive effect sizes of
multiple loci to particular regions of the genome, for example, to the different chromosomes, as
applied by chromosome-partitioning methods [57,59]. The rationale is that if the focal trait is
highly polygenic, large chromosomes will hold more QTLs than small chromosomes, and
therefore that the proportion of variance explained by each chromosome should be proportional
to the size of the chromosome. Thus, the correlation between the additive contribution and
length of chromosomes can indicate the degree to which the trait is polygenic. Similarly, when an
annotated reference genome is available, it is possible to estimate whether SNPs within or in
close proximity to genes explain a higher proportion of the phenotypic variance than do loci
located between genes [59]. Such a pattern of genomic location of SNP effect sizes would
appear only if a large number of markers reflect variation at true causative loci, thus supporting a
polygenetic nature of a trait, such as for example, was recently detected in two great tit Parus
major populations [60].

Another promising methodological advancement is genome prediction, which can be used to
confirm whether a detected set of QTLs, for example, from a genome scan, reflects variation at
true causative loci. By genotyping individuals and evaluating to which degree their phenotypes
can be predicted by their multi-locus QTL-genotypes, support for causation can be achieved
[61]. Mixed-model approaches are implemented in the gBLUP (genomic best linear unbiased
predictor method [62]) and TABLUP (a BLUP method that includes a trait-specific relationship
Trends in Genetics, March 2016, Vol. 32, No. 3 161
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Outstanding Questions
Will the Bias Towards Detecting Large-
Effect QTLs Persist? Genotype–phe-
notype mapping is currently experienc-
ing rapid advances, but identifying the
refractory small-effect QTLs requires
an incomparable amount of genotyping
and phenotyping effort. This will inevi-
tably continue to lead to a bias towards
mapping traits with simple segregation,
such as Mendelian traits.

Can We Map Structural and other
Types of Variation? There is a bias
towards screening SNP variation,
whereas structural variation, such as
indels and inversions, has been largely
neglected despite the fact that such
variation can be substantial between
species, populations, and even individ-
uals. New screening methods, including
single-molecule real-time sequencing,
nanopore-based sequencing, and opti-
cal genome mapping, where fragments
between 30 and 500 kb can be studied,
hold the promise to accurately detect
such variation.

Are Quantitative Genetics Approaches
Sufficient for Studying Polygenic
Traits? We are far from incorporating
and understanding the influences of
gene by gene interactions underlying
variation in most traits. Future efforts
need to document the importance of
gene interactions because these can
be responsible for the small additive
effects, missing heritability, and lack
of replication typically observed for
human complex traits.

Will More than a Fraction of Polygenes
Ever Be Functionally Understood?
Gene complexes and genes in regions
with limited recombination (e.g., inver-
sions) will be difficult to study above
their total multi-locus effects. More-
over, the genetic architecture and func-
tional understanding of traits that are
difficult to quantify, including most
behavioral traits, may be neglected.
matrix [63]) methods, which utilize genomic relationship (IBS) matrices to estimate the genetic
merit of an individual. These methods are of particular interest in animal and plant breeding [64],
but also have the potential to revolutionize the study of trait biology in an evolutionary context.

Concluding Remarks
Theory predicts that selection on quantitative traits at the phenotypic level is accompanied by
subtle allele-frequency changes in many loci that covary (a polygenic soft sweep), rather than a
large, single-effect allele (a hard sweep). Thus, for quantitative traits, adaptation may be reached
by an increased covariance of allelic effects rather than via large allele-frequency changes [65].
Rockman [7] suggested that this is the typical mode of evolution and that these quantitative traits
are the traits of interest in evolutionary biology. That the polygenic case is the norm rather than
the exception in nature is also a view held by other researchers [6]. By contrast, it stands clear
that years of underpowered and biased QTL analyses have led to a strong skew in the literature
in favor of large-effect loci [7,66]. The disconnect between theoretical models and empirical data
is troublesome because it may bias our conclusions of the main genetic architecture of
phenotypic traits and our understanding of the causal molecular targets of selection.

Indeed, quantitative genetics assumes that quantitative traits have a polygenic basis. However,
this is still only a hypothesis for most traits, and we need more QTL studies with high mapping
power to empirically demonstrate the polygenic nature of quantitative traits (cf. [25,60]). Never-
theless, when (or rather if) we demonstrate that such traits are truly polygenic, one might
question whether molecular genetics analyses are at all meaningful, and potentially return to
quantitative genetics frameworks. Overall, even if a tractable number of significant QTLs are
detected, one might ask whether we wish to map genes explaining as little as a few percent of
phenotypic variation. However, such seemingly small effect sizes can be important over long
evolutionary timescales, and also in medicine, and plant and animal breeding, where they can
carry significant commercial value. Thus, functional validation of low- and medium-sized QTLs
should be a prioritized research aim in motivated situations.

Moreover, even though large-effect loci may be comparatively rare, it has still been suggested
that they can play an important role in phenotypic evolution [67]. Several studies of large QTLs
have given important insights into evolutionary biology, for example, in terms of understanding
epistasis [68], heterozygote advantage [69], and sexual antagonisms [70]. Furthermore, genetic
variation important for fitness may sometimes segregate as large inversions (i.e., a single
segregating unit) in natural populations, as seen in the seaweed fly Coelopa frigida [71], in
Mimulus monkeyflowers [72], and in white-throated sparrows Zonotrichia albicollis [73]. In
addition, the evolutionary importance of other tightly linked regions, for example, the sex
chromosomes, should not be neglected [74]. Finally, it may be argued that at least some
Mendelian traits may have an evolutionary background through co-adapted gene complexes
that have evolved via polygenic segregation, and that they for that reason are interesting to
study, as has been suggested for some heritable genetic color polymorphisms [75].

Overall, much empirical work remains to be done before a more accurate understanding of
genotype–phenotype associations can be gained (see Outstanding Questions). As outlined in
this review, many exciting approaches have been developed over the past years that can
overcome some of the problems and biases of traditional methods. This should make it possible
to go beyond the mapping of monogenes and to better capture the polygenic nature of many
traits. Many of these approaches are now starting to be applied in medicine and agriculture, and
the field of evolutionary biology is following. While much of the progress to detect polygenes has
focused on new statistical frameworks, we would also like to emphasize that continued effort
must be placed on the integration of ‘omics’ approaches with phenotypic data, the species’
natural history, sophisticated population-level experiments, and work on fitness effects of
162 Trends in Genetics, March 2016, Vol. 32, No. 3



phenotypes in nature. Only if these approaches are integrated will we be able to understand the
genetic underpinnings of phenotypic traits relevant in nature.
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